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Halo formation induced by density nonuniformities in intense ion beams
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A test-particle model is used to investigate the charged-particle dynamics in an intense matched ion beam
with nonuniform density profile propagating through an alternating-gradient quadrupole magnetic field in the
space-charge-dominated regime. It is shown that self-field nonlinearities due to transverse nonuniformities in
the beam density not only can result in chaotic ion motion but also can cause halo formation. For heavy-ion
fusion applications, these results indicate that accurate density profile control is critical in preventing heavy-ion

beams from developing halos.

PACS number(s): 07.77.—n, 29.27.Eg, 41.75.—1, 52.25.Wz

There is a growing interest in the area of advanced high-
current ion accelerators for applications such as heavy-ion
fusion [1] and nuclear wast treatment [2]. Because the ion
beams in these applications are space-charge-dominated, an
important aspect in the design of such advanced accelerators
and beam transport systems is to find optimal operating re-
gimes in which the emittance growth and beam losses are
minimized. For ideal beam focusing systems, a primary
source of emittance growth is due to the intrinsic beam
space-charge effects. Indeed, Hofmann et al. [3] have shown
that under certain conditions, the Kapchinskij-Vladimirskij
(KV) beam distribution [4,5], the only known collisionless
equilibrium for periodically focused intense ion beams, ex-
hibits space-charge-induced instabilities, resulting in emit-
tance growth and possible beam losses.

Recent particle-in-cell (PIC) simulation studies [6] of in-
tense ion beam propagation indicate that mismatched beams
develop halos, and that the halo ions can contribute to the
emittance growth and are most likely to be lost in the beam
transport systems. One of the consequences of halo-induced
beam losses is the production of residual radioactivity in the
system, so that continuous operation becomes problematic.
Several mechanisms for halo development have been pro-
posed [7], including the single-particle—core-interaction
model. However, none of these models has been fully vali-
dated, both because the presence of numerical noise in the
PIC simulations makes a direct verification of halo formation
extremely difficult, and also because it is difficult in experi-
ments to single out individual effects that may produce beam
halos.

In this paper, use is made of a test-particle model to in-
vestigate the dynamics of root-mean-squared (rms) matched,
intense ion beams propagating through an alternating-
gradient quadrupole magnetic field. The elliptical cross sec-
tion of the beam is incorporated in the present analysis, as-
suming that the beam has a parabolic density profile

transverse to the propagation direction. A distribution func-
tion that is consistent with the assumed density profile is
used to specify the initial conditions for the test particles. It
is shown that self-field nonlinearities due to the transverse
nonuniformity in the beam density profile not only can in-
duce chaotic ion motion [8] but also can lead to halo forma-
tion. Because rms beam matching, which does not guarantee
necessarily beam matching except for the (ideal) KV beam
equilibrium, is widely utilized in the design of accelerator
and beam transport systems, the halo formation mechanism
reported in this paper is of particular importance.

We consider an rms-matched, continuous, intense ion
beam propagating in the z direction through an alternating-
gradient quadrupole magnetic field with axial periodicity
length . In the paraxial approximation, the transverse equa-
tions of motion for an individual ion can be expressed as [4]
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where s= B,ct is the axial coordinate, the periodic function
Kg(s)=K4(s+S) describes the quadrupole focusing field,

&(x,y,s) and B, qﬁ(x,y,s)e: are the scalar and vector poten-
tials associated with the space charge and current of the in-
tense ion beam, g and m are the ion charge and rest mass,
respectively, ¢ is the speed of light in vacuo, Byc is the
average axial beam velocity, and y,=(1—8;) "2 is the
relativistic mass factor.

To employ the test-particle model, we determine an ana-
lytical expression for the scalar potential, assuming that the
beam density profile has the parabolic form

A+ 6y —280,(x%/a?+y?/b%) for x?*/a’+y?/b*<1,

np(%.y,8) = 0 otherwise.
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In Eq. (3), N=mabn,= [nydxdy=const is the number of
ions per unit axial length. The parameter dn, is a measure of
the nonuniformity of the beam density, and is allowed to be
in the range 0<4én,<n, . The periodic outermost beam en-
velope functions, a(s)=a(s+S) and b(s)=b(s+S), are to
be determined from Egs. (6) and (7). From the equilibrium
Poisson equation, the scalar potential is given by [9]

£ npdt
Px.y.s)= = ”q“b[ fo [T+ 0]

® dt T , ’
+L [(a2+t)(b2+t)]1/2J0 ny(T")dT' |,
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where ny(T)=n,+ dnp,—26n,T for 0<T<1, and n,(T)
=0 otherwise, and the variable 7 is defined by
2 2

T(x,y,t)= EZ—'*‘—I‘ .

a’+t + ®
Here, the function ¢é=§(x,y) is defined by T'(x,y,§)=1 for
any point outside the beam, and by £=0 for any point inside
the beam. After a straightforward but lengthy calculation, a
closed analytical expression for ¢(x,y,s) can be obtained for
the assumed parabolic-density profile [9].

Making use of the rms beam envelope equations obtained
by Sacherer [10] it can be shown that the periodic envelope
functions for the rms-matched beam, a(s)=a(s+S) and
b(s)=b(s+S), solve the coupled differential equations,

d?a 2gK g%e?
ds? +K‘I(S)a~a+b - a3x=0’ ©
db 28K  gle?
a7 b=y~ e =0, 7

where K=2g°N/ yz,B,%mc2 is the normalized beam per-
veance, g =(1— 6i,/3n,) ! is the density shape factor, and
€, and g, are the unnormalized rms emittances in the x and
y directions, respectively. Both &, and &, are taken to be
constant because the present test-particle model is aimed at
the onset of halo formation, where the rms properties of the
beam are not expected to vary appreciably.

For a quadrupole focusing channel with the step-function
lattice illustrated in Fig. 1(a), the periodic envelope functions
a(s) and b(s) are obtained numerically from Egs. (6) and
(7) and are plotted in terms of the rescaled quantities
a(s)/Vge,S and b(s)/\Vge,S in Fig. 1(b). The choice of
system parameters in Fig. 1(b) corresponds to #7=0.5,
oq=80°, 6n,/n,=0.1 (g=1.03), SK/e,=10.0, and &,
=g, . Here, the parameter 7 is the filling factor for the step-
function lattice [11]; and of=S[3ds[[; ds r,(s")]* is a
measure of the average focusing field strength squared,
and is approximately equal to the vacuum phase advance
squared [11]. For the case shown in Fig. 1(b), the space-
charge-depressed phase advances, as defined by
o,=ge J5ds/a’*(s) and ay=geyfgds/b2(s), are calculated
to be 0,=12.89° and o, =12.89°.
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It is important to specify initial conditions for the test-
particle motion that are consistent with the density profile
assumed in Eq. (3). This is accomplished by the particular
choice of initial distribution function at s=s,

26N
flx,y,x",y’,s0)= m 5(W*1)+'ﬂ,2g—2€;€—yH(W)-
8

In Eq. (8), SN=mab dn,, the prime denotes the derivative
with respect to s, 8(x) is the Dirac delta function, H(x) is the
function defined by H(x)=+1 for 0=x=<1, and H(x)=0,
otherwise, and W is the variable defined by

W—xz+—71 ' '2+y2+——5b’ b')?
=7 gzsx(ax xa')"+ gzsy(y yb')*~.
©)

Here, a,a’,b,b’ denote the “initial” values at s=sq. It is
readily verified that n,(x,y,s¢)= [fdx'dy’ indeed yields the
parabolic-density profile in Eq. (3), and that 7rge, and
m7ge, are the maximum initial areas occupied by the beam
particles in the phase planes (x,x’) and (y,y'), respectively.
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FIG. 1. (a) Lattice function «,(s) for an alternating-gradient
quadrupole magnetic field with periodic step-function profile and
filling factor »; and (b) nonlinear periodic envelope functions a(s)
and b(s) obtained numerically from Egs. (6) and (7) for »=0.5,
0,=80°, 8n,/A,=0.1 (g=1.03), SK/e,=10.0, and g,=¢,.
Here, a(s) and b(s) are plotted in terms of rescaled quantities

a(s)/Vge,S and b(s)/Vge,S.
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FIG. 2. Poincaré surface-of-section plots for the trajectories of 100 test ions obtained numerically from Egs. (1) and (2) for propagation
over 400 lattice periods. The test ions are loaded initially at s =s( according to the distribution function in Eq. (8). The two cases correspond
to (a) a uniform-density (KV) beam with 8n,=0 (g=1), and (b) a parabolic-density beam with &n,/n,=0.1 (g=1.03). The system
parameters are otherwise the same in both (a) and (b), and are given by 7=0.5, 0(,=80°, SK/e,=10.0, and &,= €, . Shown in (c) is the
Poincaré surface-of-section plot for the trajectory of a single halo test particle for the case presented in (b).

The dynamical equations (1) and (2) together with Egs.
(3)—(9) completely describe the model and are used subse-
quently to show halo formation in nonuniform density
beams. For 6n,=0 (i.e., for g=1), the beam density is uni-
form and the self-fields have a linear dependence on x and y
within the ellipse defined by (x/a)?+ (y/b)?=1, correspond-
ing to the KV beam equilibrium. In this case, Egs. (1) and (2)
reduce to coupled (linear) Hill’s equations, and the ion orbits
are confined within the beam envelope, provided the latter is
stable.

For a nonuniform beam with 6n,>0 (i.e., with g>1),
however, Egs. (1) and (2) are nonlinear due to the nonlin-
earities in the self-field forces. The ion orbits are noninte-
grable and can become chaotic, as shown previously in the
constant-radius-envelope approximation [8]. This is also true

for periodically varying envelope functions. Because Egs. (1)
and (2) are nonintegrable, numerical analyses prove to be
more effective than analytical approaches. In the present
analysis, the Adams predictor-corrector scheme [12] is used
to integrate numerically Eqgs. (1) and (2), where the periodic
functions a(s) and b(s) are obtained numerically from the
envelope equations (6) and (7). Using the analytical expres-
sion for the scalar potential ¢ [9], various benchmark studies
have been carried out to assure that the computer roundoff
errors are negligibly small and do not affect the results pre-
sented below.

Figure 2 shows the Poincaré map of the trajectories of 100
test ions for the phase plane (x,y) as the test ions pass each
lattice period, i.e., at s=0,S,2S, ... ,400S. The ions are ini-
tially loaded at s=s,=0 according to the distribution func-
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tion in Eq. (8) for the choice of system parameters corre-
sponding to 7=0.5, 0(,=80°, SK/e,=10.0, and &,=¢,.
Case (a) corresponds to a uniform-density (KV) beam with
iy /Ap=0 (g=1), while case (b) corresponds to a
nonuniform-density beam with a,/n,=0.1 (g=1.03). In
Fig. 2(a), all of the ion orbits are enclosed within the ellip-
tical beam boundary, i.e., within the solid circle defined by
(x/a)?+ (y/b)*=1, as expected for a KV beam. In contrast,
Fig. 2(b) shows a tenuous halo of ions surrounding a dense
core for the case of a nonuniform-density beam. The dense
core is indicated by the solid circle (x/a)?+ (y/b)?>=1. It is
found that the halo particles can escape from the beam core
on a time scale as short as a few lattice periods. Figure 2(c)
shows the Poincaré surface-of-section in the phase plane
(x,y) for a single halo particle for the case shown in Fig.
2(b). The maximum radial excursion of halo particles in Fig.
2 is about two times the maximum envelope radius for the
particular set of parameters chosen in the figure. The nonuni-
formity threshold condition, (7, /7)., for the expulsion of
halo particles from the beam core defined by the boundary
x?/a*+y?/b*>=1 can be smaller than 10% in the parameter
region (0y,KS/e,) of practical interest. More detailed re-
sults and analysis, including the phase space structure inside
and outside the beam, will be reported in a future article [9].
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To summarize, we have shown using a test-particle model
that nonlinearities in the self-fields not only can result in
chaotic ion motion but also can cause a halo to develop for
an intense ion beam propagating through an alternating-
gradient quadrupole magnetic field. This is found to be true
even when the beam is matched in the rms sense in the
space-charge-dominated regime which is of considerable
practical importance in the design of advanced accelerators.
The importance of this mechanism for halo formation, which
has long been overlooked, is further elucidated by the fact
that the chaotic particle trajectories and the escape of the
halo particles from inside the beam are due totally to the
nonuniformity in the beam density profile in the present
model. For heavy-ion fusion applications, these results indi-
cate that accurate density profile control is critical in prevent-
ing heavy-ion beams from developing halos.
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